CITY OF LIVERPOOL EDUCATION COMMITTEE

NAME J......leday.
FORM or CLASS Lo swience I
SUBJECTmatho.

$$
r=19.8^{n}+17
$$

$$
\begin{aligned}
& 8 r-17.8+^{17}=19.8^{n+1}+17 \\
& {\left[8 r-17.8+17=19.8^{n+1}+17\right.}
\end{aligned}
$$

$$
\begin{aligned}
& (1+7) r-11.7 \\
& r^{2}+7(r-17) \\
& \frac{19.8^{n+1}+17}{19.8^{n}+12}=?
\end{aligned}
$$

$$
19 \cdot 8^{n+1}+17
$$

Ω

$$
\begin{aligned}
r & =(17+2) 8^{n}+17 \\
& =17 \cdot 8^{n}+2 \cdot 8^{n}+17 \\
& =2 \cdot 8^{n}(\bmod 17)
\end{aligned}
$$

$$
\begin{aligned}
& r_{n}=2.8^{n}(\bmod n) \text {. } \\
& r_{n+1}=2 \cdot 8^{n+1}(\bmod 11) \text {. } \\
& \therefore r_{n+1}=8 r_{n}(\bmod 17) \text {. } \\
& 19 \cdot 8^{n+1}+17 \\
& (17+2) 8^{n+1}+17 \\
& 28^{n+1}(\bmod 12) \text {. } \\
& r_{n}=A \cdot 2 \cdot 8^{n}+17 K . \\
& 8 r_{n}=2.8^{n+1}+17.8(K) \\
& 17 \cdot 8^{n}+17 \\
& k=\left(1+8^{n}\right) \\
& 12\left(1+8^{n}\right) \\
& 17.8+17.8^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& r_{n}=19.8^{n}+17 . \\
& =(17+2) 8^{n}+17 \\
& =17.8^{n}+2 \cdot 8^{n}+17 \\
& \begin{array}{r}
.17 \\
49
\end{array} \\
& =2.8^{n}(\bmod 17) \text {. } \\
& r_{n+1}=19 \cdot 8^{n+1}+17 \\
& \begin{aligned}
8 r^{n}+17 \cdot 8^{n} & =(17+2) 8^{n+1}+17 \\
& =17 \cdot 8^{n+1}+2 \cdot 8^{n+1}+17 \\
& =2 \cdot 8^{n+1}(\bmod 17)
\end{aligned} \\
& 8 x^{8 r} \\
& \text { Let } n=0 \quad r=19+11 \\
& -36
\end{aligned}
$$

\therefore it is not prime
\therefore for all n it is not prime.

$$
\begin{aligned}
& r_{n+1}=8\left\{2.8^{n}+17\left(1+8^{n}\right)\right\} \\
&=2.8^{n+1}+17 \cdot 8+8^{n+1} \\
& r_{n+1}=(1+7) r_{n}-17.7 \\
&= r_{n}+7 r_{n}-17.7
\end{aligned}
$$

$$
\begin{aligned}
r_{n} & =19 \cdot 8^{n}+17 \\
& =(17+2) 8^{n}+17 \\
& =17\left(1+8^{n}\right)+8^{n} \cdot 2
\end{aligned}
$$

1.

neat.

$$
\begin{aligned}
S & =u t-1 / 2 a t \\
36 \cdot 4 & =(3 S \sin \alpha) t-1 / 2 \times 9.8 t^{2}
\end{aligned}
$$

hong

$$
\begin{aligned}
& 2 \sqrt{42}^{2} \\
& \frac{42}{2} \times 42 \\
& \times 42
\end{aligned}
$$

$$
=21 \times 4^{2}
$$

$$
\begin{aligned}
s & =u t \\
42 & =3 S \cos \alpha t \\
t & =\frac{4 t^{2} 6}{35 \cos \alpha} \\
36.4= & 42 \tan \alpha-\frac{1}{x} \times \frac{9.8 \times 4 z^{2}}{3 s^{2} \cos ^{2} \alpha} \\
& =42 \operatorname{Tan} \alpha-\frac{9.8 \times 21 \times 42 \sec ^{2} \alpha}{3 s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 18.2=21 \tan \alpha-\frac{9.8 \times 21^{3^{2}}}{35^{2} 5^{2}}\left\{1+\tan ^{2} \alpha\right\} . \\
&=21 \operatorname{Tan} \alpha-\frac{9.8 \times 24^{2}}{35^{2}}-\frac{9.8 \times 23^{2}}{35^{2}} \tan ^{2} \alpha \\
& \frac{9.8 \times 21^{2}}{35^{2}} \operatorname{Tan}^{2} \alpha-21 \operatorname{Tan} \alpha+\frac{9.8 \times 21^{2}}{35^{2}}-18.2=0 \\
& 3.528 \operatorname{Tan} \alpha-21 \operatorname{Tan} \alpha-\sqrt{4.62 \alpha}=0 \\
& \operatorname{Tan} \alpha=\frac{21 \pm \sqrt{21^{2}+4 \times 53.528 \times 14.672}}{2 \times 3.528} \\
&=\frac{21 \pm \sqrt{648.051264}}{7.056} \\
& \therefore \operatorname{Tan} \alpha=7.151 \\
& \text { or }=
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}(x)=f_{30}(x) \\
& f_{n}(x)=f \operatorname{som}(\pi) \cdot>_{30}^{8} \text { "定 } \\
& \rightarrow f_{10}(x)=f_{40}(x) \leftarrow 3_{3}^{\circ} \\
& f_{20}(x)=f_{30}(x) \\
& f_{30}(x)=f_{60}(x)=f_{0}(x) \\
& f_{10}(x)=f_{40}(x) \\
& f_{30}(x)=f_{0}(x) \\
& f r=f_{3} 0^{2 n} \\
& \begin{aligned}
f_{11} & =f_{u} \\
f_{10} & =f_{\text {so }}
\end{aligned} \\
& \mathrm{F}_{30}=\mathrm{F}_{\mathrm{NO}}=F_{0}=f_{0}
\end{aligned}
$$

$$
\begin{aligned}
& f_{n+1}(x)=f_{1}\left\{f_{n}(x)\right\} \\
& f_{30+n}(x)=f_{n}(x) \\
& f_{0}(x)=f_{30}(x) . \\
& f_{10}=f_{20} \\
& f_{n+1}(x)=f_{1}\left\{f_{30+n}(x)\right\} . \\
&=f_{31}+n(x) \\
& f_{n+1}(x)=f_{31} \\
& f_{10}=f_{4}\left\{f_{n-1}(x)\right\} \\
& f_{10}(x)=f_{1}\left\{f_{9}(x)\right\} \\
& \therefore f_{30}(x)=f_{1}\left\{f_{29}(x)\right\} \\
& f_{0}(x)=f_{1}\left\{f_{29}(x)\right\} \\
& f_{40}(x)=f_{1}\left\{f_{39}(x)\right\} \\
& f_{39}(x)=f_{9}(x) \\
& \therefore f_{40}(x)=f_{10}(x) \\
& 30
\end{aligned}
$$

$$
\begin{aligned}
& f_{0} \rightarrow f_{30} \rightarrow f_{40} \longrightarrow f_{50} \longrightarrow \\
& f_{1} \longrightarrow f_{31} \rightarrow f_{41} \longrightarrow f_{51} \\
& f_{2} \longrightarrow f_{32} \\
& f_{3} \longrightarrow f_{31} \\
& f_{10} \rightarrow f_{40} \longrightarrow f_{50} \longrightarrow \\
& \therefore f_{10} \longrightarrow f_{30}
\end{aligned}
$$

but $f_{150} \rightarrow f_{30}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{5}=f_{35} \\
\therefore f_{4}=f_{34} \\
f_{2}=f_{32}
\end{array}\right\} \\
& f_{28} \rightarrow f_{4} \\
& 36 \rightarrow 30 \rightarrow 24 \rightarrow \\
& 18 \rightarrow 12 \rightarrow 6 \\
& f_{20}=f_{2} \\
& f_{s}=f_{3 s} \\
& f_{6}=f_{36} \\
& f_{1}=f 31 \\
& f_{10}=f_{40} \\
& \text { fo }=f 30 \\
& f_{30}+n=f_{n} \\
& f_{40}=f_{10}
\end{aligned}
$$

$$
\begin{aligned}
f_{10} & =f_{1}\left\{f_{9}\left(e_{x}\right\}\right. \\
f_{40} & =f_{1}\left\{f_{39}\right\} . \\
& \left.=f_{1}\left\{f_{38}\right\} f_{9}\right) \\
& =f_{1} \\
f_{40} & =f_{1}\left(f_{9}\right) \\
f_{9} & =f_{39} \\
f_{8} & =f_{30} \\
f_{0} & =f_{1}\left\{f_{30}\right\} \\
f_{1} & =f_{1}\left\{f_{0}\right\} \\
f_{1} & \left.=f_{10}\right\}=f_{11} \\
& =f_{1}\{ \\
f_{0} & =f_{11} \\
f_{1} & =f_{10} \\
f_{2} & =f_{12}=f_{32} \\
f_{10} & =f_{20}
\end{aligned}
$$

$$
\begin{aligned}
& f_{n}=f_{n-6 r} \\
& f_{10}=4 \\
& f_{20}=f_{14}=f_{8}=f_{2} \\
& f_{30}=f_{24}=f_{18}=f_{12}=f_{6}=f_{0} \\
& f_{40}=f_{34}=f_{28}=f_{22}=f_{16}=f_{10} \\
&=f_{4} . \\
& f_{n+1}=f_{1}\left(f_{n}\right) \\
& f_{35}=f_{5} \\
& f_{30}+n=f_{n} \\
& f_{0}=x \\
& f_{10}=f_{40} \\
& f_{30}=f_{0} \\
& f_{10}=f_{1}\left(f_{4}\right) \\
& f_{40}=f_{1}\left(f_{39}\right) \\
& f_{39}=f_{9}
\end{aligned}
$$

$$
\begin{aligned}
& t_{6}=f_{1}\left(f_{S}\right) \\
& f_{5}=f_{1}\left(f_{4}\right) \\
& f_{4}=f_{1}\left(f_{2}\right) \\
& f_{3}=f_{1}\left(f_{2}\right) \\
& f_{1}=f_{1}(f \circ) \\
& f_{0}=f_{1} f_{1} f_{1} f_{1} f_{1} f_{1} f_{0} \\
& f_{2}=\frac{2\{2 x-1\}-\left\{\frac{x+1}{2 x-1}\right\}}{2 x-1+x+1} \\
& =4 x \\
& f_{7}=f_{37} \\
& f_{9 S}=f_{S} . \\
& f_{10}=f_{40}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}=f_{7} \quad f 3 s=f_{s} \\
& f_{n+1}=f_{1}\left(f_{n}\right) \\
& f_{1}=\frac{2 x-1}{x+1} \\
& \left.f_{36}=f_{1}\left(f_{35}\right)\right) \\
& =f_{t}\left(f_{s}\right)=f_{6} \\
& f_{9}=f_{1}\left\{f_{8}\right\} \\
& =f 39 \\
& f_{20}=f_{1}\left\{f_{29}\right\} \text {. } \\
& f_{29}=f_{1}\left\{f_{28}\right\} \text {. } \\
& \text { IF } f_{3 s}=f_{s} \\
& f_{30}=f_{0}=x \\
& f_{34}=f_{4} \\
& f_{33}=f_{3} \\
& f_{32}=f_{2} \\
& f_{21}=f_{1} \\
& f_{30}=f_{0} \\
& f_{3 s}=f_{s} \\
& f_{36}=f_{6} \\
& f_{31}=f_{7} \\
& f 38=f 8 \\
& \text { F } 29 \\
& =f 9 \\
& \text { f40 } \\
& =f_{10}
\end{aligned}
$$

$$
\begin{aligned}
& f_{30}=f_{1}\left\{f_{2 a}\right\} .=100 f_{0} \\
& f_{0}=f_{1}\left\{f_{p}(x)\right\} . \\
& f_{1}=f_{1}\left\{f_{0}\right\} . \\
& x=f_{1}\left\{f_{p}(x)\right\} \\
& x=\frac{2 f_{p}-1}{f_{p}+1} \\
& x\left\{f_{p}+1\right\}=2 f_{p}-1 \\
& x f_{p}-2 f_{p}=-1-x \\
& f_{p}(x-2)=-1-x=-(1+x) \\
& \therefore f_{p}=\frac{-(1+x)}{x-2}=\frac{1+x}{x+2} \\
& f_{1}(x)=f_{1}\left\{f_{0}(x)\right\} \\
& \therefore f_{0}\{x)=x . \\
& f_{0}(x)=f_{1}\left\{f_{p}(x)\right\} . \\
& x=2 f_{p}-1 \\
& x\{f p+1 \\
& x\{f+1\}=2 f_{p}-1 \\
& f(x-2)=-1-x=-(1+x)
\end{aligned}
$$

$$
\begin{aligned}
& f_{p}=\frac{1+x}{x+2} . \\
& f_{n+1}=f_{1}\left\{f_{n}\right\} . \\
& f_{35}=f 5 . \\
& f_{0}=x \\
& f_{1}=\frac{2 x-1}{x+1} \\
& f_{28}=? \\
& f_{28}=f_{1}\left\{f_{21}\right\} . \\
& f_{29}=f_{1}\left\{f_{28}\right\} . \\
& f_{35}=f_{1}\left\{f_{34}\right\}=f_{1}\left\{f_{44}\right\} . \\
& f_{4}=f_{34} \\
& \therefore f_{30}=f_{10}=x \\
& \therefore f_{29}=f_{p} . \\
& f_{28}=f_{p-1}
\end{aligned}
$$

f

$$
\begin{aligned}
& f_{n+1}=f_{1}\left\{f_{n}\right\} . \\
& f_{3 s}=f s \\
& f_{28}=\text { ? } \\
& f_{n+1}=\frac{2 f_{n}-1}{f_{n}+1} \\
& =\frac{2(f n+1)-2}{f n+1} \\
& =2-\frac{2}{\left(f_{n}+1\right)} \\
& f_{1}^{\prime}(x)=(\pi+1)(2 x-\pi) \\
& \begin{array}{r}
=\frac{(x+1)(2)-(1)(2 x+1)}{(x+1)^{2} \quad 1+n=}
\end{array} \\
& \begin{array}{l}
=2 x+2-2 x+1 \\
=+3=0
\end{array} \\
& (7+n)= \\
& f_{n+1}=f_{1}\left\{f_{n}\right\} .1(+n) \\
& f_{2+1}=f_{1}\left\{f_{2}\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 28 \\
& f_{8}=f_{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(x)=2-3 / x+1 \\
& f_{2}(x)=2-3 / 2-3 / x+i+1
\end{aligned}
$$

4.

$3 \mathrm{~km} \mathrm{~h}^{-1}$

If speed of boot $=x \mathrm{kmh}^{-1}$

$$
\begin{aligned}
& \therefore \text { domentrean Tolal }=(x+3) \mathrm{kmh}^{-1} \\
& \therefore \text { uptream tolal }=(x) \mathrm{kmh}^{-1} \\
& =(3-x) \\
& \therefore \frac{4}{x+3}+\frac{4}{x-3}=1 \\
& 4(x-3)+4(x+3)=x^{2}-9 \\
& 4 x-y^{2}+4 x+x^{2}=x^{2}-9 \\
& 8 x=x^{2}-9 \\
& x^{2}-8 x-9=0 \\
& (x-a)(x+1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x=9 \text { or }-1 \\
& \text { Ratio }=\frac{x+1}{x-3}=\frac{12}{6}=2 \\
& \text { or }=\frac{2}{-4}=1 / 2 \\
& \frac{x-3}{x+3}=4 / 2=2
\end{aligned}
$$

Pove $f_{n}=f_{n}(\bmod s)$

$$
\therefore \quad A C=40+200 \sin 40=40(1+5240)
$$

$$
O A=200 \cos 40
$$

$$
\begin{aligned}
\operatorname{Tan} \theta & =\frac{{ }^{2}+1}{x 0 \gamma \cos 40} \\
& =2 \sec 40+2 \tan 40 \\
& =84^{\circ} .8^{\circ} \\
& =84^{\circ} 48^{\circ} .
\end{aligned}
$$

$$
\begin{array}{ll}
P_{A} U=n_{A}^{*} R T & P_{B} V=n_{B}^{*} R T \\
P_{B}+P_{A}=P & x_{A}+x_{B}=1 \\
P=x_{A} P_{A}^{0}+x_{B} P_{B}^{0} & x_{A}^{*}+x_{B}^{*}=1
\end{array}
$$

$n_{A}=n_{0}$ of moles of A in wit volune of liviel
$n_{B}=$ no of moles of Bin init voluse ol luived

$$
\begin{aligned}
& n_{a}^{*}=\text { sume in vap. } \\
& n_{D}^{*}=\cdots \quad .
\end{aligned}
$$

$$
\frac{x_{A^{+}}}{x_{A}}=\frac{P_{A}^{0}}{x_{A} P_{A}{ }^{0}+\frac{x_{B}}{x} \frac{P_{B}^{o_{B}}}{1}}=1
$$

$$
=\frac{1}{x_{A}+\frac{x_{B P_{B}^{\prime}}^{P_{P}^{P}}}{P_{A}}}=\frac{\text { mole frout of } A \text { is vap }}{\text { mole fract of } A \text { in hiviel }}
$$

I $P_{B}^{0}=P_{A}^{0}$ then $x_{A}=x_{A}^{*}$.

$$
\begin{aligned}
& \begin{aligned}
x_{A}^{*} & =n_{A}^{*} / n_{B^{*}}^{*}+n_{A}^{*} \\
= & \frac{P_{A}}{P_{A}+P_{B}}
\end{aligned}\left\{\begin{array}{l}
n_{A}^{*}=\frac{P_{A} V}{R T} \\
n_{B}^{*}=\frac{P_{B} V}{R T}
\end{array}\right.
\end{aligned}
$$

Tital no of moles $=x\left[\frac{1}{153.8}+\frac{1}{169.9}\right]$

$$
\begin{aligned}
& X_{\mathrm{Cece}_{4}}=\frac{x}{153.8} \\
& x\left[1 / 153.8+\frac{1}{165.8}\right]
\end{aligned}=0.525 .
$$

$$
\begin{aligned}
& =0.525 \times 114.9+0.425 \times 238.3 \\
& =173.53{ }^{3} \mathrm{mmN}
\end{aligned}
$$

Comp of Uap reletrie to comp of heinid mix.

$$
P_{A}^{0}=\operatorname{SUP} A \quad P_{B}^{0}=\sup \text { of } B
$$

$x_{A}=$ mole frat of A in the lievinal

$$
\begin{aligned}
& x_{A}^{*}=" \quad \text { " } \\
& x_{B}=" \\
& " \\
& x_{B}^{*}= \\
& x_{B}^{*} \\
&
\end{aligned}
$$

$$
P=\text { Total premure of vapons. }
$$

prorided ideal hierid tiveal vapans then car vile doun:
and $x_{A}+x_{B}+x_{C}+\cdots=1$
$\operatorname{vap}\left\{P_{T O T}\right\}=P_{A}+P_{B}=x_{A}+$

$$
=x_{A} P_{A}^{0}+x_{B} P_{0}^{0} .
$$

OBirant B is mone volatile Atun A ie han a liver bpt.

The varow Preme of Pure OCl_{4} and sice 4 at $25^{\circ} \mathrm{C}$ are 114.9 and $2383 \mathrm{~mm} \| \mathrm{g}$. amming iled bhenirow calcubite totel V.P. of a mixtine of cent meights of the 2 Livinels.
x gins of ceat hiquil

$$
\begin{aligned}
& \mathrm{CCl}_{4} \text { Ant }=153.8 \\
& \text { siclu mut }=169.9 .
\end{aligned}
$$

No of moles of $\mathrm{CCl}_{y}=\frac{x}{153.8}$

$$
\text { ".. .. " Si } Q_{4}=\frac{x}{169.9}
$$

*

However molecules returnerg funn the vapor to He hivid wil have excult the sane chene ar for the ruve havil syitem. \therefore tas lus chance of getling out then gettiry baal in cyain. to presure revtial merue of A is las Hain He S.U.P of pure $A+$ similay for B.

Becanve there is the statutial relation

$$
P_{A}=\frac{n_{A}}{A_{(A+B)}} \times P_{A}^{\circ}=\frac{n_{A}}{n_{A}+n_{D}} P_{D_{A}}^{\circ}
$$

vopow

$$
\text { memere } P_{B}=\frac{n_{B}}{n_{A}+N_{B}} \times P_{B}^{0} \text {. }
$$

Mole froctions - of have a inxtone of bivels $A, B, C D \quad \therefore$ mole fration of $A\left(x_{A}\right)$

$$
\begin{aligned}
X_{A} & =\frac{n_{A}}{n_{A}+n_{B}+n_{C}+n_{B}+\cdots} \\
x_{B} & =\frac{n_{B}}{\sum_{A} n_{S_{B}}} \\
\therefore P_{A} & =x_{A} P_{A}^{0} \\
P_{B} & \left.=x_{B} P_{B}^{0}\right\} \text { Rooults lem. }
\end{aligned}
$$

Chunne sapow above biecinal is ïlech then

$$
P_{\Delta}^{\circ} A \times U=\stackrel{*}{N_{A}} R T_{m}
$$

SU.P Similarly for B.
comiler mixtire of A wilt B@cout temp in equilitain with the vapow obove the havinel. camene in lievid - A moles of $A A_{B}$ moles of $]$ and in vapour $n_{A^{*}}$ anoles of A and n_{B}^{*} moles of B ner wit volume.
i). Ayciin 2 dynamie equilition are set up Tating A

Ory hamil molecules (o) suface can encupe who the vapour prowalud the fines of attraitin $A-A, B-B, A-B$ cre similes it is obiions thet chamee co' A ceequing inte vapow is rechaed by the presere of 3 + situtual relation tilween chene of A eveemis and curnout of of A to B in liqniel.
1). Ideal mistines s
c). Real mistines

Liquie phave axiut ofy became there are allractive forces between molecules an ideal bigicl mixtire - comider mising kinids A are B - an ided mixhane is ore such that the attraliue fores of A for A, B for P ard A for B are similar.

Ey Bromoethore and Sdoethare.

$$
\begin{aligned}
& \text { Berzere }+ \text { tollerene. } \\
& n \text { dezare }+n \text { Heptare. }
\end{aligned}
$$

ght can tell edecl bivice of there is no chainge in whune and to heat change on muxting.
ieler-Pwe hiviol. A if have excens A couflivint for it not to evap) (Q conit. Temp gou hnow that the memere abive hevids is the S oturatel vapows prenure.
$\cup \lll \lll<$ in dynamia
$\left.g l_{0 \text { OQ } 0<00}^{0}\right\}$ equibrim.
armive whune of lieriil is $x \mathrm{~cm}^{3}$.

$$
\begin{gathered}
P_{N_{2}}+P_{O_{2}}=760 \mathrm{mmHg} \\
P V=n R T
\end{gathered}
$$

$80 \% \mathrm{~N}_{2}-20 \% \mathrm{O}_{2}$ by volume

$$
\therefore P_{\mathrm{N}_{2}}=0.8 \mathrm{Atm} \cdot P_{\mathrm{Q}_{2}}-0.2 \mathrm{Atm} .
$$

$$
\begin{aligned}
& \mathrm{O}_{2} \rightarrow x \mathrm{~cm}^{3} \text { laind } \sim 0.048 \mathrm{q} \times x \times 0.2 \mathrm{~cm}^{3} \\
& \mathrm{H}_{2} \rightarrow \cdots \cdots 0.0235 \times x \times 0.8 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Total armont of gas dinitued $x \neq(0.2 \times 0.489$ $+0.8 \times 0.235)$

$$
\begin{aligned}
& \% / 0 x=65 \cdot 8 \% \\
& \% \Delta z=34.2 \%
\end{aligned}
$$

lianid-l irjid \quad mixtures.
Some pairs of livils are completels miable in all propontions at all temps. whent obvers are pery an cormplete inmineidle
). Corplitel mincle liqiuds. - whatever anmont of [iquese A s mineel wilt Lusrid I still ge homogenoows soln. Tmo caves to be aimelenel

